_413! Taylor's formula with remainder

Now we get to the end, the remnant, the stuff that’s left over when everything
else has been snapped up. Yes, it's time for the remainder sale. Time to move
out those Taylor series remainders.

Although Taylor’s formula gives us a good approximation to f(x) near
x = a, it’s not exact, and there is an error. And sometimes when we use
Taylor’s formula we absolutely positively have to know how large the error
can be. Otherwise, the bridge we designed almost holds cars. Or the new male
contraceptive pill we have created almost prevents pregnancy. Fortunately,
there is a simple method for bounding the error.

If we take a degree n Taylor polynomial to approximate f(x) near x = a,
we get:

Taylor's Formula with Remainder
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Remainder R, (x)

where ¢ is some number between a and x.

The quantity R,(x) is the remainder, or error term. It's the difference
between the degree n Taylor polynomial at x, which is just an approximation,
and the exact value f(x). Notice that it depends on some unidentified number
¢ that lies somewhere between a and x.

This error term is sometimes called the Lagrange Error. See examples on the next

page.



REMAINDER ESTIMATION

1. Let f(z) = v + 1. Compute the Taylor series around a = 0 up to 22 and use
this to estimate +/1.1. What is the error?

We differentiate:
o flx)=(x+1)"?s0 f(0) =1
o F@) = b+ 1) s0 (0) =
-f%m:%G%Mw+n*ﬂwf%>=—%
=D (D ) = A

Thus the Taylor polynomial of degree 2 around a = 0 is:
1 1
Py(z) =1+ 2%~ §x2
We note that we are trying to estimate v/1.1, which it f(0.1), so we plug in P5(0.1) to

get our estimate:

11 839
Py(01) =1+ — — — = =2
2(0-) =1+ 55~ 300 = 800

Now we look for the error. When we go up to degree 2, we have a formula for the error:

(3) . . . .
E = fT(C)(O.l)?’ for some ¢ between the centre and the point we'’re estimating at-i.e.,

0<ec<0.1. < Check Arithmetic =
— gy p— w— — — — -

So zZ - -

E =

3l 8(\/?)5 1000 64000(\/ﬁ)

And we know ¢ is between 0 and 0.1, and we want to know how large the error could
possibly be. We see that it is largest when the denominator is smalllest, so it is largest
when ¢ = 0, and thus F < 64000 1/16000

2. Let f(z) = vz + 1. Compute the Taylor series around ¢ = 3 up to the degree-2
term and use this to estimate /4.1. What is the error?

We differentiate:
o f(z)=(x+1)"/%s0 f(3) =2
o flla)=3(x+1)"?s0 f(3) =1
o @) =5(3) @ )0 1(0) = 5,
o« @) =5 (=3) (D) @+ )2 = oA

Thus the Taylor polynomial of degree 2 around a = 0 is:




We note that we are trying to estimate v/4.1, which it f(3.1), so we plug in P5(3.1) to
get our estimate:

1 1 6479
Py(31) =2+ — — ——
2(3-1) =2+ 35~ 3200 = 3200

Now we look for the error. When we go up to degree 2, we have a formula for the error:

< ) s . .
E=1 ( )(3 1 — 3)3 for some ¢ between the centre and the point we’re estimating
at-i.e., 3<c<3.1. So

— 3 1 3
E= 31-8(y/c+1)5 1000 — 64000(\/m)

And we know c is between 3 and 3.1, and we want to know how large the error could
possibly be. We see that it is largest when the denominator is smalllest, so it is largest
when ¢ = 3, and thus F < %.

. Let f(x) =In(z +5) — In5. Approximate this by £ — % What is the error in
this estimate provided |z| < 0.17

First, we compute the Taylor series for f around a = 0:
f(z) =In(z +5) —In(5), so f(0) =

f'(x) = 315, 50 f'(0) = 5.

/(@) = ~ ey 50 £70) = ~ .

) =

So we see that the given estimate is the degree-2 Taylor series for f, and therefore by

(3)
Taylor’s theorem, the absolute value of the error for |z| < 0.1 is exactly |f (c) 3| =

3“C+|5‘3 And |z| < 0.1 and ¢ between 0 and z, so —0.1 < z < 0.1 and 01<c<01 So
to make the error as big as possible, we make the numerator as big as possible, which
happens when z = 0.1, and the denominator as small as possible, which happens when

¢ = —0.1, so the error is, in absolute value, bounded by %.
. . . 3 . . .
. Let f(x) = sin(r). Approximate this by » — %=. What is the error in this

estimate provided |z| < 0.17



