From Yesterday

- 1. Without consulting your notes, organize a table that shows
 - the function
 - the first 4 non-zero terms of the Maclaurin series
 - the radius of convergence
 - a column to be used later.

for these functions:

Function	Maclaurin series	radius of convergence	one more column
e^x			
sin(x)			
$\cos(x)$			
1			
1-x			
1+x			
$\ln(1+x)$			
1			
$1 + x^2$			
$\arctan(x)$			

- 2. These are converging Maclaurin series. For each series:
 - Identify the function.
 - Identify the value of *x*.
 - Find the sum.

(a)
$$1+1+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...$$

(b) $1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...$
(c) $\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-\frac{1}{5!}+...$
(d) $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...$
(e) $1-\frac{1}{3!}+\frac{1}{5!}-\frac{1}{7!}+...$
(f) $1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+...$

3. For what values of *x* does this power series

$$\sum_{k=1}^{\infty} \frac{kx^k}{3^k}$$

converge. Explain your reasoning.

- 4. How many terms of the Maclaurin series for $\ln(1 + x)$ are needed to estimate $\ln(1.5)$ to within 0.0001? [No calculators...]
- 5. Add a column to your table in question 1 to show sigma notation for each function. For example the series for e^x would be:

$$\sum_{k=0}^{\infty} \frac{x^k}{k!}$$

Note that *zero factorial* has a defined value of 1.

New Questions

- 6. Find the Taylor series for $f(x) = \ln(x)$ when a = 1.
 - (a) Demonstrate how to do this by *brute force*, taking the derivatives of ln(x) at x = 1.
 - (b) Demonstrate how to do this starting with the relationship of $f(x) = \frac{1}{1-x}$ and a simple converging geometric series.
- 7. If f(x) is an odd function then $\int_{-a}^{a} f(x) dx = 0$.
 - (a) Draw a graph and explain why.
 - (b) Use the algebraic definition of an odd function to explain why. *Hint:* Consider $G(x) = \int_0^x f(t) dt$. What do you need to show about G(x)?

From Yesterday

- 1. Without consulting your notes, organize a table that shows
 - the function
 - the first 4 non-zero terms of the Maclaurin series
 - the radius of convergence
 - a column to be used later.

for these functions:

Function	Maclaurin series	radius of convergence	one more column
e^x			
sin(x)			
$\cos(x)$			
1			
1-x			
1 + x			
$\ln(1+x)$			
1			
$1 + x^2$			
$\arctan(x)$			

- 2. These are converging Maclaurin series. For each series:
 - Identify the function.
 - Identify the value of *x*.
 - Find the sum.

(a)
$$1+1+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...$$

(b) $1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...$
(c) $\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-\frac{1}{5!}+...$
(d) $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...$
(e) $1-\frac{1}{3!}+\frac{1}{5!}-\frac{1}{7!}+...$
(f) $1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+...$

3. For what values of *x* does this power series

$$\sum_{k=1}^{\infty} \frac{kx^k}{3^k}$$

converge. Explain your reasoning.

- 4. How many terms of the Maclaurin series for $\ln(1 + x)$ are needed to estimate $\ln(1.5)$ to within 0.0001? [No calculators...]
- 5. Add a column to your table in question 1 to show sigma notation for each function. For example the series for e^x would be:

$$\sum_{k=0}^{\infty} \frac{x^k}{k!}$$

Note that *zero factorial* has a defined value of 1.

New Questions

- 6. Find the Taylor series for $f(x) = \ln(x)$ when a = 1.
 - (a) Demonstrate how to do this by *brute force*, taking the derivatives of ln(x) at x = 1.
 - (b) Demonstrate how to do this starting with the relationship of $f(x) = \frac{1}{1-x}$ and a simple converging geometric series.
- 7. If f(x) is an odd function then $\int_{-a}^{a} f(x) dx = 0$.
 - (a) Draw a graph and explain why.
 - (b) Use the algebraic definition of an odd function to explain why. *Hint:* Consider $G(x) = \int_0^x f(t) dt$. What do you need to show about G(x)?